Brézis–Gallouet–Wainger-type inequality with critical fractional Sobolev space and BMO
نویسندگان
چکیده
منابع مشابه
Remainder Terms in the Fractional Sobolev Inequality
We show that the fractional Sobolev inequality for the embedding H̊ s 2 (R ) →֒ L 2N N−s (R ), s ∈ (0, N) can be sharpened by adding a remainder term proportional to the distance to the set of optimizers. As a corollary, we derive the existence of a remainder term in the weak L N N−s -norm for functions supported in a domain of finite measure. Our results generalize earlier work for the non-fract...
متن کاملA Sobolev-type Inequality with Applications
In this note, a Sobolev-type inequality is proved. Applications to obtaining linear decay rates for perturbations of viscous shocks are also discussed.
متن کاملLower Semicontinuity of Functionals of Fractional Type and Applications to Nonlocal Equations with Critical Sobolev Exponent
In the present paper we study the weak lower semicontinuity of the functional
متن کاملBMO Space and its relation with wavelet theory
The aim of this paper is a) if Σak2 < ∞ then Σak rk(x) is in BMO that{rk(x)} is Rademacher system. b) P1k=1 ak!nk (x) 2 BMO; 2k nk < 2k+1that f!n(x)g is Walsh system. c) If jakj < 1k then P1k=1 ak!k(x) 2 BMO.
متن کاملOptimal decay of extremals for the fractional Sobolev inequality
We obtain the sharp asymptotic behavior at infinity of extremal functions for the fractional critical Sobolev embedding.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2018
ISSN: 1631-073X
DOI: 10.1016/j.crma.2018.05.009